
CS103 Handout 40

Spring 2017 May 26, 2017

Extra Practice Problems 10

Here's another batch of practice problems to work through. Please let us know if there are any top-
ics you'd specifically like some more practice with. We'd be happy to provide extra practice prob-
lems on those topics!

Problem One: Set Theory
(Midterm Exam, Fall 2015)

We can use set-builder notation to describe a set by giving a rule that describes what elements are in
the set. Specifically, if P(x) is some predicate, then the set

{ x | P(x) }

is the set containing all objects x where P(x) is true (and no elements besides these).

Let's suppose that we have a set S that is a set of sets (that is, every element of S is itself a set). For-
mally, this means we're talking about a set S where

∀T. (T ∈ S → Set(T)).

If S is a set of sets, then we can take the intersection of all of the sets contained in S. The resulting
set, denoted ∩S, is called the intersection of S. For example, if

S = { {1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6} },

then ∩S = {3, 4}.

Intuitively, an object x is an element of ∩S if x belongs to every element of S. We can use this intu-
ition to come up with a formal definition of ∩S, which is given below:

∩S = { x | ∀T. (T ∈ S → x ∈ T) }

This is the standard definition of the intersection of ∩S that's used throughout set theory. However,
this definition of ∩S has a pretty major edge case.

Prove that the set ∩Ø does not exist. (Hint: Think back to Problem Set Four.)

Problem Two: Induction
Let k ≥ 1 be any natural number. Prove, by induction, that (k+1)n – 1 is a multiple of k for all n ∈ ℕ.

Problem Three: Graphs
A directed graph is called strongly connected if for any pair of nodes u and v in the graph, there's a
path from u to v and from v to u. In a directed graph, the indegree of a node is the number of edges
entering it, and its outdegree is the number of edges leaving it. Find a strongly-connected graph with
137 nodes where each node's indegree is equal to its outdegree.

2 / 4

Problem Four: First-Order Logic
Given the predicates

• TM(M), which states that M is a TM;
• String(w), which states that w is a string; and
• Accepts(M, w), which states that M accepts w,

Write a statement in first-order logic that says “the RE languages are closed under union.”

Problem Five: Functions
This question explores properties of special classes of functions.

i. Prove or disprove: if f : ℝ → ℝ is a bijection, then f(r) ≥ r for all r ∈ ℝ.

ii. Prove or disprove: if f : ℕ → ℕ is a bijection, then f(n) = n for all n ∈ ℕ.

iii. Prove or disprove: if f : ℝ → ℝ and g : ℝ → ℝ are bijections, then the function h : ℝ → ℝ
defined as h(x) = f(x) + g(x) is also a bijection.

Problem Six: Binary Relations
Let L be an arbitrary language over an alphabet Σ. We'll say that two strings x, y ∈ Σ* are indistin-
guishable relative to L, denoted x ≡L y, if the following is true:

∀w ∈ Σ*. (xw ∈ L ↔ yw ∈ L).

i. Prove that if L is any language over Σ, then ≡L is an equivalence relation over Σ*.

ii. Prove that if x ≡L y and x ∈ L, then y ∈ L.

iii. Let L = { w ∈ {a, b}* | |w| ≡₃ 2}. What are all the equivalence classes of ≡L?

Problem Seven: The Pigeonhole Principle
Suppose that n people are seated at a round table at a restaurant. Each of the n people orders a dif-
ferent entrée for dinner. The waiter brings all of the entrées out and places one dish in front of each
person. Oddly enough, the waiter doesn't put anyone's dish in front of them.

Prove that there is some way to rotate the table so that at least two people have their entree in front
of them.

3 / 4

Problem Eight: DFAs, NFAs, and Regular Expressions
Consider the following language over Σ = { O, E }:

PARITY = { w | w has even length and has the form En or
 w has odd length and has the form On }

For example, EE ∈ PARITY, OOOOO ∈ PARITY, EEEE ∈ PARITY, and ε ∈ PARITY, but
EEE ∉ PARITY, EO ∉ PARITY, and OOOO ∉ PARITY.

i. Write a regular expression for PARITY.

ii. Design a DFA that accepts PARITY.

Problem Nine: Nonregular Languages
Let Σ = {a, b} and let L = { w ∈ Σ* | w has the same number of a's and b's and |w| ≥ 10100 }.

i. Prove or disprove: L is not a regular language.

ii. Prove or disprove: there is at least one infinite subset of L that is regular.

Problem Ten: Context-Free Grammars
Let Σ = {a, b} and let L = { w ∈ Σ* | w is a palindrome and w contains abba as a substring }. Write
a context-free grammar for L.

Problem Eleven: Turing Machines
Let Σ = {a, b, =}. Draw the state-transition diagram of a TM for the {w=w | w ∈ {a, b}* }.

4 / 4

Problem Twelve: R and RE Languages
Earlier in this packet of problems you translated the statement “the RE languages are closed under
union” into first-order logic. It turns out that this statement is true, but a bit trickier to prove that you
might expect.

If we take a language L ∈ RE, we know that we can get a recognizer M for it. A recognizer for L, in
software, would be a function

bool inL(string w)

that takes as input a string w. If w ∈ L, then inL(w) returns true. If w ∉ L, then inL(w) may return
false, or it may loop infinitely.

Let L₁ and L₂ be RE languages. Below is an incorrect construction that purportedly is a recognizer
for L₁ ∪ L₂:

bool inL1uL2(string w) {
return inL1(w) || inL2(w);

}

Here, inL1 and inL2 are recognizers for L₁ and L₂, respectively.

i. Give concrete examples of languages L₁ and L₂ and implementations of methods inL1 and
inL2 such that the above piece of code is not a recognizer for L₁ ∪ L₂. Justify your answer.

To show that the RE languages are closed under union, it's easiest to think about combining together
two verifiers for the input languages to produce a verifier for their union.

ii. Using the verifier definition of RE, prove that the RE languages are closed under union.

Problem Thirteen: Impossible Problems
(We will cover the topics necessary to solve this problem on Wednesday, May 31st.)

Let Σ = {a, b} and let L = { ⟨M⟩ | M is a TM and ℒ(M) ⊆ a* }. Prove that L ∉ R.

